CH-314 Structural Analysis ruben.rodriguezmadrid@epfl.ch ray.cowen@epfl.ch

Jigsaw 2C

2/2

- 1. [From Past Exams] Determine if each statement is true or false. If false, correct the statement to make it true.
 - a. NMR spectroscopy uses infrared pulses to flip nuclear spins.

 FALSE = NTR www nadio quantu (Rg) pulse.
 - b. A more shielded proton will resonate at a higher ppm value. FALSE = "The quark the smaller the chemical shift"
 - c. 13C spectra with 1H decoupling are more sensitive than without decoupling.

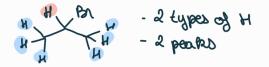
 Good thinking! And remember that the sensitivity is proportional to the S/N (the second part of your options)

TRUE and FALSE

This aggin mation can be both true or false depending on our interpretation of "more sometive". For example, one can consider that the coupled specina is more sensitive because it gother more informations since it shows more peaks. Therefore, the aggin mation would be sobse. On the other side, one can consider the decoupled spectra as more sensitive because it significantly reduces the moise increasing the data interpretability. There fore the information would be true.

d. Fourier transformation converts the time domain into the frequency% domain. TRUE

e. Multiplet splitting patterns are caused by scalar couplings.


f. Increasing the magnetic field will result in a larger separation of peaks within multiplets in ppm.

FAISE: The reference frequency r_{reg} is proportional to the magnetic field \vec{B} . The chemical shift is $\vec{c} = \left(\frac{\vec{v} - \vec{v}_{reg}}{\vec{v}_{reg}}\right)$ 106 [epm]. Therefore, if \vec{B} increases, they will increase resulting in a smaller separation of peaks in ppm. Good!!

2. [Hore Section 2.2] How many different signals will you see in a 1H spectrum in the following molecules? See also: Jigsaws 2A.1, 2B.3, 2D.1, and 2E.1. $\frac{2}{2}$

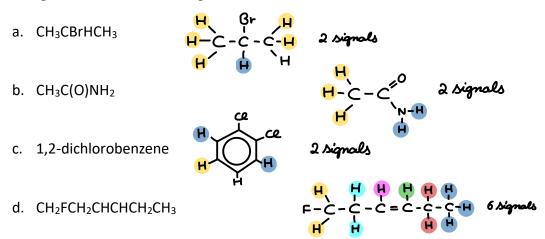
Every peak of the spectrum corresponds to a different type of proton. Therefore, the number of signals in a 1H spectrum of a moderate is equal to the number of different H in that moderate.

a. CH3CBrHCH

b. CH3C(0)NH2

c. 1,2-dichlorobenzene

d. CH2FCH2CHCHCH2CH3


3. [Hore Section 2.3] Two students prepared each an NMR tube of ethanol in deuterated chloroform. The first one used 1 mM of ethanol, the second student used 100 times that concentration. Apart from the difference in intensity, will they obtain the same proton spectrum? Why or why not?

No, the two students will likely not obtain identical proton spectral due to a phenomenon thrown as "concentration-dependent effects". When the concentration of ethanol increases tignificantly, as in the seand student's semple (100 mm), intractions between ethanol moderates, such as trydrogen bending, becomes stronger.

These interanolecular interactions can slightly shift the chemical environment of protons (more positive ppm) because gen-bonded proton will be destricted, especially for the fundroxyl (-Ot) proto in ethanol, which is perticularly sensitive to fundrogen bending.

Jigsaw 2C

- 1. [From Past Exams] Determine if each statement is true or false. If false, correct the statement to make it true.
 - a. NMR spectroscopy uses infrared pulses to flip nuclear spins. **F**
 - b. A more shielded proton will resonate at a higher ppm value. F
 - c. 13 C spectra with 1 H decoupling are more sensitive than without decoupling. au
 - d. Fourier transformation converts the time domain into the frequency domain. T
 - e. Multiplet splitting patterns are caused by scalar couplings. T
 - f. Increasing the magnetic field will result in a larger separation of peaks within multiplets in ppm. F ... will result in a smaller separation of peaks within multiplets in ppm
- 2. [Hore Section 2.2] How many different signals will you see in a ¹H spectrum in the following molecules? See also: Jigsaws 2A.1, 2B.3, 2D.1, and 2E.1.

3. [Hore Section 2.3] Two students prepared each an NMR tube of ethanol in deuterated chloroform. The first one used 1 mM of ethanol, the second student used 100 times that concentration. Apart from the difference in intensity, will they obtain the same proton spectrum? Why or why not?

The higher sample concentration increases the number of H-bonds, causing the spectrum to shift to a higher frequency. Why? See Hore Section 2.3